Colour valued Scattering Matrices
نویسنده
چکیده
We describe a general construction principle which allows to add colour values to a coupling constant dependent scattering matrix. As a concrete realization of this mechanism we provide a new type of S-matrix which generalizes the one of affine Toda field theory, being related to a pair of Lie algebras. A characteristic feature of this S-matrix is that in general it violates parity invariance. For particular choices of the two Lie algebras involved this scattering matrix coincides with the one related to the scaling models described by the minimal affine Toda S-matrices and for other choices with the one of the Homogeneous sine-Gordon models with vanishing resonance parameters. We carry out the thermodynamic Bethe ansatz and identify the corresponding ultraviolet effective central charges.
منابع مشابه
Colour valued scattering matrices from non simply-laced Lie algebras
A new set of exact scattering matrices in 1+1 dimensions is proposed by solving the bootstrap equations. Extending earlier constructions of colour valued scattering matrices this new set has its colour structure associated to non simply-laced Lie algebras. This in particular leads to a coupling of different affine Toda models whose fusing structure has to be matched in a suitable manner. The de...
متن کاملColours associated to non simply-laced Lie algebras and exact S-matrices
A new set of exact scattering matrices in 1+1 dimensions is proposed by solving the bootstrap equations. Extending earlier constructions of colour valued scattering matrices this new set has its colour structure associated to non simply-laced Lie algebras. This in particular leads to a coupling of different affine Toda models whose fusing structure has to be matched in a suitable manner. The de...
متن کاملSymmetry of Anomalous Dimension Matrices for Colour Evolution of Hard Scattering Processes
Abstract: In a recent paper, Dokshitzer and Marchesini rederived the anomalous dimension matrix for colour evolution of gg → gg scattering, first derived by Kidonakis, Oderda and Sterman. They noted a weird symmetry that it possesses under interchange of internal (colour group) and external (scattering angle) degrees of freedom and speculated that this may be related to an embedding into a cont...
متن کاملMorphology for Color Images via Loewner Order for Matrix Fields
Mathematical morphology is a very successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of a maximum and a minimum with respect to an order. Many operators constructed from dilation and erosion are available for grey value images, and recently useful analogs of these processes for matrix...
متن کاملOn Real-valued Visual Cryptographic Basis Matrices
Visual cryptography (VC) encodes an image into noise-like shares, which can be stacked to reveal a reduced quality version of the original. The problem with encrypting colour images is that they must undergo heavy pre-processing to reduce them to binary, entailing significant quality loss. This paper proposes VC that works directly on intermediate grayscale values per colour channel and demonst...
متن کامل