Colour valued Scattering Matrices

نویسنده

  • C. Korff
چکیده

We describe a general construction principle which allows to add colour values to a coupling constant dependent scattering matrix. As a concrete realization of this mechanism we provide a new type of S-matrix which generalizes the one of affine Toda field theory, being related to a pair of Lie algebras. A characteristic feature of this S-matrix is that in general it violates parity invariance. For particular choices of the two Lie algebras involved this scattering matrix coincides with the one related to the scaling models described by the minimal affine Toda S-matrices and for other choices with the one of the Homogeneous sine-Gordon models with vanishing resonance parameters. We carry out the thermodynamic Bethe ansatz and identify the corresponding ultraviolet effective central charges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colour valued scattering matrices from non simply-laced Lie algebras

A new set of exact scattering matrices in 1+1 dimensions is proposed by solving the bootstrap equations. Extending earlier constructions of colour valued scattering matrices this new set has its colour structure associated to non simply-laced Lie algebras. This in particular leads to a coupling of different affine Toda models whose fusing structure has to be matched in a suitable manner. The de...

متن کامل

Colours associated to non simply-laced Lie algebras and exact S-matrices

A new set of exact scattering matrices in 1+1 dimensions is proposed by solving the bootstrap equations. Extending earlier constructions of colour valued scattering matrices this new set has its colour structure associated to non simply-laced Lie algebras. This in particular leads to a coupling of different affine Toda models whose fusing structure has to be matched in a suitable manner. The de...

متن کامل

Symmetry of Anomalous Dimension Matrices for Colour Evolution of Hard Scattering Processes

Abstract: In a recent paper, Dokshitzer and Marchesini rederived the anomalous dimension matrix for colour evolution of gg → gg scattering, first derived by Kidonakis, Oderda and Sterman. They noted a weird symmetry that it possesses under interchange of internal (colour group) and external (scattering angle) degrees of freedom and speculated that this may be related to an embedding into a cont...

متن کامل

Morphology for Color Images via Loewner Order for Matrix Fields

Mathematical morphology is a very successful branch of image processing with a history of more than four decades. Its fundamental operations are dilation and erosion, which are based on the notion of a maximum and a minimum with respect to an order. Many operators constructed from dilation and erosion are available for grey value images, and recently useful analogs of these processes for matrix...

متن کامل

On Real-valued Visual Cryptographic Basis Matrices

Visual cryptography (VC) encodes an image into noise-like shares, which can be stacked to reveal a reduced quality version of the original. The problem with encrypting colour images is that they must undergo heavy pre-processing to reduce them to binary, entailing significant quality loss. This paper proposes VC that works directly on intermediate grayscale values per colour channel and demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000